1	Ext angle of octagon = $360 \div 8$ (= 45) or Int angle of octagon $(8-2) \times 180 \div 8$ oe (= 135)		6	M1	for method to find the size of one exterior or one interior angle of a regular octagon
	e.g. $10 + 2 \times 10 \times \sin 45$ (= $10 + 10\sqrt{2}$ or 24.1)			M1	method to find HE or AD
				1411	22.5 comes from (180 – "135") ÷ 2
	or e.g. $\frac{10\sin 112.5}{\sin 22.5}$ (= 24.1)				112.5 comes from "135" – "22.5"
,	e.g. $10 \times ("10 + 10\sqrt{2}") (= 100 + 100\sqrt{2} \text{ or } 241.4)$			M1	area ADEH
	or 10 × "24.1" (= 241.4)				
	e.g. $10 \times \sin 45^{\circ} (=5\sqrt{2} \text{ or } 7.07)$			M1	finds perpendicular height of triangle ACD (may
	or e.g. $\sqrt{10^2 + 10^2 - 2 \times 10 \times 10 \times \cos^2 135}$ (= 18.4)				be found before, but must realise this is also height
					of triangle) or finds the length of AC
	or $\frac{10\sin^{\circ}135^{\circ}}{\sin 22.5}$ (= 18.4)				22.5 comes from (180 – "135") ÷ 2
	e.g. 0.5 × "24.1" × "7.07" (= 85.3)			M1	finds the area of triangle ACD
	or 0.5×10×"18.4"×sin112.5 (= 85.3)				112.5 comes from "135" – "22.5"
		327		A1	accept 326 – 327
	Alternative (splitting octagon into triangles and				
	subtracting trapezium and triangle)				
	Ext angle of octagon = $360 \div 8 (= 45)$		6	M1	for method to find the size of one exterior or one
	or Int angle of octagon $(8-2) \times 180 \div 8$ oe $(=135)$				interior angle of a regular octagon or method to
	or one of 8 angles at centre = $360 \div 8 = 45$				find one angle at centre of octagon when split into 8 equal triangles
·	e.g. 0.5 × 10 × 5 × tan67.5 (= 60.35)			M1	Area of one triangle (one-eighth of octagon) or
	$(10\sin 67.5)^2$				octagon
	or $0.5 \times \left(\frac{10 \sin 67.5}{\sin 45}\right)^2 \times \sin 45 (= 60.35)$				
	or Octagon = 8 × "60.35" (= 482.8)				
	e.g. $10 + 2 \times 10 \times \sin 45^{\circ} (= 10 + 10\sqrt{2} = 24.14)$			M1	Method to find HE
	$0.5 \times (10 + 10 + 10\sqrt{2}) \times 5\sqrt{2} $ (=120.71)			M1	Method to find area of trapezium HEGF
	$0.5 \times 10 \times 10 \times \sin 135^{\circ} (= 35.35)$			M1	Method to find area of triangle ABC
		327		A1	accept 326 – 327
					Total 6 marks

2	Γ <u>·</u>		6	M1	oe
2	[chord $AB = \sqrt{5^2 + 5^2 - 2 \times 5 \times 5 \times \cos 50}$ or $2 \times 5 \times \sin 25$		6	IVII	0e
	(= 10sin25 or 4.226)				
	$[\angle APB =]\cos^{-1}(\frac{4^2 + 4^2 - "4.226"^2}{2 \times 4 \times 4}) (=63.77)$			M1	oe may use other methods but must be a complete method for $\angle APB$
	or $[\angle OPA =] \sin^{-1}(\frac{0.5 \times "4.226"}{4}) (= 31.88)$				or $\angle OPA$ (see below for sine rule)
	[Area sector $AOB = \frac{50}{360} \times \pi \times 5^2 = \frac{125}{36} \pi$ or 10.9)			M1	oe independent
	[Area sector $APB = \frac{\text{"63.77"}}{360} \times \pi \times 4^2 (= 8.90)$			M1	oe NB: 2 × "31.88" = "63.77"
	(50 -2 1 -2) ("63.77"			M1	oe (10.9 9.57) +
	$\left(\frac{50}{360}\pi \times 5^2 - \frac{1}{2} \times 5^2 \times \sin 50\right) + \left(\frac{\text{"63.77"}}{360} \times \pi \times 4^2 - \frac{1}{2} \times 4^2 \times \sin \text{"63.77"}\right)$				(8.90 – 7.17)
	Working not required, so correct answer scores full marks (unless from	3.06		A1	allow 3 – 3.1
	obvious incorrect working)				
	Alternative version (using line of symmetry OP in quadrilateral OAPB)				Total 6 marks
	$[\angle OPA] = \sin^{-1}\left(\frac{5\sin 25}{4}\right) (= 31.88)$		6	M1	oe (see above for cosine rule & trig)
	[Area sector $APB = \frac{2 \times "31.88"}{360} \times \pi \times 4^2 (= 8.90)$			M1	oe
	[Area $OAPB = $] $2 \times \frac{1}{2} \times 5 \times 4 \times \sin(180 - 31.8825) (=16.75)$			M1	oe
	[Area sector $AOB = \frac{50}{360} \times \pi \times 5^2 = \frac{125}{36} \pi = 10.9$]			M1	oe independent
	[Area R =] "10.9" + "8.90" – "16.75"			M1	oe
	Working not required, so correct answer scores full marks (unless from	3.06		Al	allow 3 – 3.1
	obvious incorrect working)				
					Total 6 marks

3	$0.5 \times \pi \times 6^2 \ (= 56.54) \text{ or } 12 \times 6 \ (= 72)$		3	M1	
	or $\pi \times 6^2$ oe				
	"72" – "56.54…"			M1	dep M1 for a complete method
		15.5		A1	15.4 to 15.5
					Total 3 marks

$75 \times 2 \ (=150)$)	MI	"150" for AOC may be seen on
				diagram.
$\frac{"150" \times \pi r^2}{360} \text{ oe } (= 1.309r^2 \text{ or } \frac{5\pi}{12}r^2)$			M1	dep 1st M1
$0.5 \times \sin (150) \times r^2$ oe $= 0.25r^2$			M1	dep 1st M1
				a complete method to find the area
				of triangle OAC in terms of r
eg $\frac{150\pi}{360}r^2$ - 0.5sin(150) r^2 = 200 oe			M1	correct equation in r^2 or rearranged to make r^2 or r the
Of $(1.3090.25)r^2 = 200$				subject.
	13.7	1	A1	accept 13.7 - 13.8
				Total 5 marks

5	$8^2 + 15^2 (= 289)$		5	M1	
	$\sqrt{8^2+15^2}$ (=17)			M1	
	$\pi \times \left(\frac{17}{2} \right)^2 (= 226.98) \text{ or } 0.5 \times 15 \times 8 (= 60)$			M1	
	$\pi \times \left(\frac{17}{2} \right)^2 - 0.5 \times 15 \times 8$ ("226.98" - "60")			M1	
		167		A1	Accept answers which round to 167
					Total 5 marks

6	eg $0.5 \times x \times x \times \sin 60$ $\left(= \frac{\sqrt{3}}{4}x^2 = 0.433x^2 \right)$ oe where $x = PQ$ eg $0.5 \times 2n \times 2n \times \sin 60 \left(= \sqrt{3}n^2 = 1.732n^2 \right)$ oe where $2n = PQ$		4	M1	For expression for area of triangle [using $AB = x$ and $PQ = \frac{2}{3}x$ gives $\frac{\sqrt{3}}{6}x^2 = 0.192x^2$] (correct
	or use $0.5 \times b \times h$ where $h = \sqrt{x^2 - (0.5x)^2} (= \frac{\sqrt{3}}{2}x)$ oe				expression in 1 variable eg <i>PQ</i>)
	eg $6 \times 0.5 \times 1.5x \times 1.5x \times \sin 60 \left(= \frac{27\sqrt{3}}{8}x^2 = 5.845x^2 \right)$ oe			M1	for expression for area of hexagon [using $AB = x$ and $PQ = \frac{2}{3}x$ gives
	eg $6 \times 0.5 \times 3n \times 3n \times \sin 60$ $\left(= \frac{27\sqrt{3}}{2}n^2 = 23.382n^2 \right)$ oe or				$\frac{3\sqrt{3}}{2}x^2 = 2.598x^2$
	$ eg \frac{2(\frac{1}{2} \times 1.5x \times 1.5x \times \sin 120) + 1.5x \times AE \text{ where} }{2(\frac{1}{2} \times 1.5x \times 1.5x \times \sin 120) + 1.5x \times AE \text{ where} } $				(correct expression in 1 variable eg AB)
	$AE = \sqrt{(1.5x)^2 + (1.5x)^2 - 2 \times 1.5x \times 1.5x \times \cos 120}$ $\left(= \frac{27\sqrt{3}}{8}x^2 = 5.845x^2 \right) \text{ or use of } 6 \times 0.5 \times b \times h, \text{ finding } h \text{ by Pythagoras}$				
	eg $6 \times 0.5 \times 1.5x \times 1.5x \times \sin 60 - 0.5 \times x \times x \times \sin 60 = 72\sqrt{3}$ oe or		-	M1	for a correct equation for shaded
	$\left(\frac{27\sqrt{3}}{8} - \frac{\sqrt{3}}{4}\right)x^2 = 72\sqrt{3} \text{ or } (5.845 0.433)x^2 = 124.7 \text{ or}$				area (correct equation in 1 variable, eg PQ or x etc)
	eg $6 \times 0.5 \times 3n \times 3n \times \sin 60 - 0.5 \times 2n \times 2n \times \sin 60 = 72\sqrt{3}$ oe				
	$\left(\frac{27\sqrt{3}}{2} - \sqrt{3}\right)n^2 = 72\sqrt{3} \text{ or } (23.382 1.732)n^2 = 124.7$				
		4.8		A1	

			Total 4 marks
--	--	--	---------------

7	eg $2d \times 2d - 4 \times \pi \times (\frac{1}{2}d)^2 (=40)$ oe or $4r \times 4r - 4 \times \pi \times r^2 (=40)$ oe or $x^2 - 4\pi \left(\frac{1}{4}x\right)^2 (=40)$ oe or $w^2 - \pi \left(\frac{1}{2}w\right)^2 (=10)$ oe		4	M1	oe a correct expression or a correct equation for the shaded area (must be in one unknown only) where d = diameter r = radius x = side of large square w = side of square when shape divided into 4
	$d = \sqrt{\frac{40}{4 - \pi}} (= 6.826) \text{ or } 2d = \sqrt{\frac{160}{4 - \pi}} (= 13.652) \text{ oe}$ $r = \sqrt{\frac{40}{16 - 4\pi}} (3.413) \text{ or } 4r = \sqrt{\frac{640}{16 - 4\pi}} (= 13.652) \text{ oe}$ $x = \sqrt{\frac{40}{1 - 0.25\pi}} (13.652) \text{ or } w = \sqrt{\frac{10}{1 - 0.25\pi}} (= 6.826) \text{ oe}$			M1	oe a correct expression for d or $2d$ or r or $4r$ or x or w
	(perimeter =) 8 × "6.826" (8 × diameter(or side of small square when divided)) or 16 × "3.413" (16 × radius) oe or 4 × "13.652" (4 × side of square)			M1ft	dep on first M1 For substituting values into a calculation for the perimeter use of their r , d , x , w
	1	54.6		A1	54.4 - 54.7
-					Total 4 marks

8	$3 \times 2.5 = 7.5$ oe or $2 \times 3 \times 2.5 = 15$ oe or		6	M1 for area of rectangle
	$12 \times 3 (= 36)$ oe or $2 \times 12 \times 3 (= 72)$ oe or			
	$12 \times 2.5 (= 30)$			
	$(2 \times 3 \times 2.5) + (2 \times 12 \times 3) + (12 \times 2.5) (= 117)$ or			M1 for a complete method to find the surface
	$(2 \times 7.5) + (2 \times 36) + (12 \times 2.5) (= 117)$ or			area
	15 + 72 + 30 (= 117)			
	1+0.1 (= 1.1) or			M1
	100(%) + 10(%) (= 110(%)) or			
	26.95			
	$\frac{26.95}{110}$ (= 0.245) oe			
	26.95 ÷ "1.1" (= 24.5(0)) or			M1 dep on previous M1
	$26.95 \div "110" \times 100 (= 24.5(0))$ or			1 1
	$26.95 \times 100 \div "110" (= 24.5(0))$ oe or			
	"0.245" × 100 (= 24.5(0)) oe			
	"117" ÷ 15 (= 7.8 or 8) and "8" × "24.50" (= 196) or			M1for working with a whole number of tins
	"117" ÷ 15 (= 7.8 or 8) and 200 ÷ "24.5" (= 8.1) or "117"			(rounded up) to reach figures where a decision
	\div 15 (= 7.8 or 8) and 200 \div "8" (= 25)			can be made
		Correct figures to		A1 e.g. 196
		show that Jonty is		7.8 or 8 and 8.1
		correct		24.5 and 25
				Total 6 marks

9	$(\angle AOC =)132 \times 2(= 264)$		3	M1	for method to find angle at the
					centre. Do not award this mark if
					contradicted on the diagram eg if
					obtuse AOC is labelled as 264
	"264" 2 85 4 3 3 187			M1	for a method to find the length of
	$eg \frac{"264"}{360} \times 2 \times \pi \times 8.5 \ (= 39.1 \text{ or } \frac{187}{15}\pi)$				$\operatorname{arc} AC$ or perimeter of the sector
					- allow use of their AOC as long
	or $2 \times \pi \times 8.5 - \frac{360 - 264}{360} \times 2 \times \pi \times 8.5 \ (= 39.1 \text{ or } \frac{187}{15} \pi)$				as clearly labelled
	or $\frac{"264"}{360} \times 2 \times \pi \times 8.5 + 2 \times 8.5$				
	or $2 \times \pi \times 8.5 - \frac{360 - 264}{360} \times 2 \times \pi \times 8.5 + 2 \times 8.5$				
	Correct answer scores full marks (unless from obvious	56.2	1	Al	accept 56.1 - 56.2
	incorrect working)				-
					Total 3 marks

10	$\pi \times 4.8^2 \times \frac{72}{360} $ (= 14.4(76)) oe		5	M1 for finding the area of the sector
	$\frac{1}{2} \times 4.8^{2} \times \sin 72 \ (= 10.9(56) \text{ or } 11) \text{ oe or}$ $\frac{1}{2} \times 5.6(4) \times 3.8(8) \text{ oe}$			M1 for finding the area of the triangle (Allow use of cosine rule/sine rule/SOHCAHTOA/Pythagoras to find <i>AC</i> (5.6(427.8)) and <i>OM</i> (3.8(8328)) where <i>M</i> is the midpoint of <i>AC</i>)
	"14.4(76)" – "10.9(56)" (= 3.520)			M1 for finding the shaded area with all figures from correct working
	"3.5(20)" × 14 × 3 × 60 "3.5(20)" × 2520			MI
	Award marks within the range from correct working	8870		A1 accept 8820 – 8950 from correct working
				Total 5 marks

11	(radius of large circle =) $\frac{4}{\cos 54}$ or $\frac{4}{\sin 36}$ or $\frac{8\sin 54}{\sin 72}$ or $\sqrt{\frac{8^2}{2-2\cos 72}}$ (= 6.805) or (height of 1 triangle within pentagon =) $4\tan 54$ (=5.505) oe		6	M1	for a complete method to find the radius of the large circle or the perpendicular height of one triangle within the pentagon
	(area of large circle =) $\pi \times ("6.805")^2$ (= 145.489) oe or (area of sector =) $\frac{72}{360} \times \pi \times ("6.805")^2$ (= 29.097) oe			M1	for a complete method to find the area of the large circle or the area of a sector of the large circle
	(area of pentagon =) $5 \times \frac{1}{2} \times 8 \times \text{``5.505''}$ (= $80 \tan 54 = 110.11$) or $10 \times \frac{1}{2} \times 4 \times \text{``5.505''}$ (= $80 \tan 54 = 110.11$) or $5 \times \frac{1}{2} \times \text{``6.805''} \times \text{``6.805''} \times \sin 72$ (= 110.11) oe OR (area of one triangle =) $\frac{1}{2} \times 8 \times \text{``5.505''}$ (= 22.022) or $\frac{1}{2} \times \text{``6.805''} \times \text{``6.805''} \times \sin 72$ (= 22.022) or $\frac{1}{2} \times \text{``6.805''} \times 8 \times \sin 54$ (= 22.022) oe			M1	for a complete method to find the area of the pentagon OR the area of one triangle eg <i>OED</i> or equivalent
	"145.489"-"110.11"+ πr^2 ="110.11"- πr^2 oe or $5 \times ("29.097"-"22.022") + \pi r^2 = 5 \times "22.022" - \pi r^2 oe$			M1	for a correct equation for the radius of the smaller circle
	$2\pi r^2 = 2 \times "110.11" - "145.489" (= 74.731)$ oe			M1	for a correct rearranged equation with the area of the circle the subject or better
	Correct answer scores full marks (unless from obvious incorrect working)	3.45		A1	accept 3.43 – 3.45
					Total 6 marks